Conjugation of ovalbumin to trimethyl chitosan improves immunogenicity of the antigen.

نویسندگان

  • Bram Slütter
  • Peter Christiaan Soema
  • Zhi Ding
  • Rolf Verheul
  • Wim Hennink
  • Wim Jiskoot
چکیده

Subunit vaccines are generally safer, but often less effective than live attenuated vaccines as they lack the necessary co-stimulatory factors. The formulation of an adjuvant like N-trimethyl chitosan (TMC) with an antigen can overcome its poor immunogenicity. Recent data suggest the importance of incorporating the antigen and the adjuvant into one entity for maximum immunostimulatory effect, e.g. by using (nano)particles. In the present paper we introduce the conjugation of an antigen, ovalbumin (OVA), to TMC as an alternative to nanoparticles for subunit vaccination. OVA was covalently linked to TMC using thiol chemistry (SPDP method). The uptake of the resulting TMC-OVA conjugate by dendritic cells (DC) and its effect on DC maturation was assessed in vitro and its immunogenicity was investigated in mice. We found that with the SPDP method a reducible covalent bond between TMC and OVA could be introduced, without disrupting the protein's antigenicity and structure. Uptake of TMC-OVA conjugate by dendritic cells was similar to the uptake of TMC/OVA nanoparticles, over 5-fold increased compared to a solution of OVA and TMC. Mice immunized with TMC-OVA conjugate produced 1000-fold higher OVA specific IgG titers than mice immunized with either OVA or a physical mixture of TMC and OVA. Moreover, these antibody titers were slightly elevated compared to the titers obtained with TMC/OVA nanoparticles. Conjugation of the antigen to an adjuvant is therefore a viable strategy to increase the immunogenicity of subunit vaccines and may provide an alternative to the use of particles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adjuvanted, antigen loaded N-trimethyl chitosan nanoparticles for nasal and intradermal vaccination: adjuvant- and site-dependent immunogenicity in mice.

N-trimethyl chitosan (TMC) nanoparticles have been shown to increase the immunogenicity of subunit antigens after nasal and intradermal administration. This work describes a second generation of TMC nanoparticles containing ovalbumin as a model antigen (TMC/OVA nanoparticles) and an immunopotentiator (TMC/OVA/immunopotentiator nanoparticles). The selection of immunopotentiators included Toll-li...

متن کامل

Antigen-adjuvant nanoconjugates for nasal vaccination: an improvement over the use of nanoparticles?

Entrapment of antigens in mucoadhesive nanoparticles prepared from N-trimethyl chitosan (TMC) has been shown to increase their immunogenicity. However, because of their large size compared to soluble antigens, particles poorly diffuse through the nasal epithelium. The aim of this work was to study whether nasal vaccination with a much smaller TMC-antigen nanoconjugate would result in higher ant...

متن کامل

IpaD-loaded N-trimethyl Chitosan Nanoparticles Can Efficiently Protect Guinea Pigs against Shigella Flexneri

Background: Shigella flexneri is a pathogen responsible for shigellosis around the world, especially in developing countries. Many immunogenic antigens have been introduced as candidate vaccines against Shigella, including N-terminal region of IpaD antigen (NIpaD). Objective: To evaluate the efficiency of O-metylated free trimethyl chitosan na...

متن کامل

Immunogenicity evaluation of rBoNT/E nanovaccine after mucosal administration

Objective(s): The Botulism syndrome is caused by types A to G of botulinum neurotoxins. The binding domains of these neurotoxins are immunogenic and considered as appropriate candidate vaccines. Due to the low immunogenicity of recombinant vaccines, there have been many studies on the use of biocompatible carriers such as chitosan nanoparticles for the delivery of these vaccines. The aim of thi...

متن کامل

Layer-by-Layer Assembly of Inactivated Poliovirus and N-Trimethyl Chitosan on pH-Sensitive Microneedles for Dermal Vaccination.

The aim of this work was to coat pH-sensitive microneedle arrays with inactivated polio vaccine (IPV) particles and N-trimethyl chitosan chloride (TMC) via electrostatic interactions, and assess the immunogenicity of the vaccine after topical application of the coated microneedles in rats. The surface of 200 μm long microneedles was first chemically modified with pH-sensitive (pyridine) groups ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of controlled release : official journal of the Controlled Release Society

دوره 143 2  شماره 

صفحات  -

تاریخ انتشار 2010